If it's not what You are looking for type in the equation solver your own equation and let us solve it.
9p^2-9p=0
a = 9; b = -9; c = 0;
Δ = b2-4ac
Δ = -92-4·9·0
Δ = 81
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$p_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$p_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{81}=9$$p_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-9)-9}{2*9}=\frac{0}{18} =0 $$p_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-9)+9}{2*9}=\frac{18}{18} =1 $
| 110x=90x | | 2(10r-7)-2(1=10r)=-r+2r | | 1/2=(6w+8) | | 4x-35+107=180 | | 1.2x-1.2=1x | | 11u=48+5u | | 1/2=96w+8) | | 2x²+x-8=0 | | 9w+18=15w | | x/10-9=19/20 | | x=-2x=11 | | 1/4x=0.25 | | 10+4x(5x4x)=5-(x+8) | | 3x^2+39=18x | | (4x+16)+(10x-10)=180 | | 1=x+(x*1.6180) | | 10k-5k=27 | | 2xx+7=24 | | k2+6=19 | | -8a+15=47 | | 4x+4=6x-9 | | 6(x)+2=18 | | 7k2+57k+13=5 | | X-3=3x+6 | | w+3/4=1/5 | | 9(3x)=4(5x)+2 | | |x+-333.22|=12.78 | | 2(x-4)^2+-26=0 | | 2(x)+5=3(x)-2 | | 2x^2-64=26 | | -36=2(y-6)-8y | | 20=x+(x*1.6180) |